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I NTRODUCTION

The entrainment mechanismin turbulent jets has been a subject of con-

siderab]e basic and applied interest for manyyears. Recently, this problem

has received increased attention because of the need to develop compact, yet
1

highly efficient thrust augmenting ejectors for VSTOLapplications Several

new techniques have been introduced or proposed to increase the jet entrain-

ment e.g , hypermixing 2. , swirling 3, acoustic and unsteady jetinteraction 4

5
techniques . It is the objective of this paper to present recent results on

the entrainment characteristics of two types of unsteady jet flows, i.e.,

oscillating jets with time-varying jet deflection and pulsating jets with

time-varying mass flow.

The use of oscillating jets for enhanced flow entrainment was first

advocated by Viets 5 who also developed a rather ingenious fluidic jet actua-

tion device. Other oscillating jet studies have been reported 6'7'8'9 but

they do not contain entrainment measurements.

The favourable effect of pulsating jets on flow entrainment seems t:o

have ]teen first recognized during the development of the pulse jet

engineI0'II']2. LockwoodI0 also noted the generation of ring vortices due

to pulsating [low, an effect later verified more clear]y by Curtet and

Cirard 13• Further pulsating jet studies are those of Johnson and Yang14

l)ide]le et el. 15,16, Binder and Favre-_.Larinet17, , Crow and Champagne18 and,

very recently Bremhorst and Hatch19.

The fo]lo:eing section is a report of three different experiments which

were c_,nducl:ed to assess the effectiveness of jet unsteadil_ess in enh_nc_nf;

i 1o_ cntr_iltn_crlt.
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EXPERIMENTS

Definition of the edge of a turbulent jet raises suhtleties which are

18
di';cussed by Crow and Champagne in terms of the turbulent (or inner rota-

tional) region and the induced potential flow (or potential tails). In the

experiments mean volumetric flow rates Q(x) in the turbulent region of

unsteady subsonic jets were determined at a number of distances x from

the nozzle by integration of mean jet velocity distributions. A constant

temperature hot-wire anemometer was used in all cases and the mean of its

linearized output was assumed to be proportional to the mean velocity in the

direction of the center line of the nozzle. Errors arising from estimation

of the edge of the turbulent region and from the influence of high ratios of

rm_; to mean velocities near the edge of the jet are regarded as tolerable in

this investigation.

Various measures of entrainment are defined in the literature. Here,

entrainment is defined as (Q(x) - QR)/QR where QR is a reference flow

rate and is properly taken as the mean volumetric flow rate QE at the

nozzle ex.it in two of the experiments. In the third experiment QR is taken,

for lack of precise nozzle flow rate information, as the volumetric flow rate

Q1 at a station near the nozzle in a steady jet. This still enables com-

par[sons and is discussed later in more detail. Clearly, the entrainment

differs by unity from the dimensionless local flow rates Q(x)/QR which

are presented in this paper.

F[uldicallv Oscillated Three-Dimensional Jet

The fluidic nozzle illustrated in figure 1 was used by the first and

second authors to exhaust a jet of air with oscillating angle into still air.
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Tile nozzle was based on a design by Viets 5. Flow from a plenum chamber and a

contraction emerges from a 6.2 x 49.0 mm rectangular section into a rapid

diffusion section where it is bistable because of the proximity of the walls.

The flow is illustrated at the moment it attaches to the lower wall A. This

sets up an entrainment process and generates compression and rarefaction waves

in the feedback tube connecting control parts A' and B T. Continuous jet

oscillation results at a frequency which depends on the length of the feedback

tube.

In both the oscillating and the steady tests the nozzle was operated at

a pressure ratio of 1.13 to produce a mean mass flow rate of 0.0188 kg/s as

measured with an upstream orifice plate. The jet oscillated through about 7

dogrees e[ther _i.de of the nozzle center line and with a fundamental frequency

of 52 ]Iz. IIowever, higher harmonics were appreciable because of the flip-flop

mode of operation. Viets 5 showed that velocity fluctuations at the half-width

position of the mean velocity profile have almost a square wave shape.

The values of volumetric flow rate Q(x) used in figure 2 were obtained

by integration of the mean velocity distribution across the jet cross-sections.

The limits of integration were stations at which the mean velocity was

bet_een 5 and l0 percent of the maximum value in a distribution. This

necessitated mild extrapolation of the distribution furthest downstream so

thCLt the value of Q(x) there has a possible error of about I0 percent.

For the two cases of oscillating and fixed jet angle, Q(x) is normal-

ized by the mean volumetric flow rate QE at the nozzle exit. Mass flow

raI-_ upstream of the nozzle (measured with an orifice plate) was used to

determine QE The hydraulic diameter of the nozzle (4 x area/perimeter)

i:_ tm,,clas the length scale because of the essentially three-dimensional
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nature of the flow. The change in slope of the curve of Q(x)/QE for the

steady jet is attributed to the transition from a high aspect ratio three-

dimensional flow to a more axisymmetric meanflow.

Mechanically Oscillated Two-Dimensional Jet

Recent two-dimensional studies of flow past an airfoil at zero incidence

and with an oscillating trailing edge jet flap have been extended by the first

and second authors to measurements of entrainment. Details of the mechani-

cally oscillated nozzle have been reported previously 9'20. In these tests

the nozzle was oscillated through 5.2 degrees either side of the airfoil

ehordline and at frequencies of 4 and 20 Hz. The free stream velocity was

29.2 m/s and the nozzle exit velocity of 137 m/s was estimated, using the

results of Bradbury and Riley 21, from measurements of the velocity profile

close to the nozzle with the jet held parallel to the free-streamo

20
The instantaneous velocity profiles measured in a previous study

were averaged over a cycle of nozzle oscillation to obtain mean velocity

profiles and hence mean volumetric flow rates. Because nozzle velocity was

not measured directly the measurements in figure 3 for the oscillating and

the steady cases are both normalized by the volumetric flow rate in the

steady jet across the measuring section nearest the nozzle (Joe. 35 nozzle

widths downstream). The use of a small nozzle width (0.38 ram) and measurin[;

stations many nozzle widths downstream is a legacy of the preceding stud:ies

of jet flaps and leads to an uncertainty in Q(x)/QI which increases to

about I0 percent at the downstream limit. Nevertheless, the measured insen-

:;itiv_ty of Q(×)/QI over the range of x to the frequency of oscillation

i_ s:Ignif:icanto It must be stressed that the jet flowed into a moving air-

5 t. FC_Im.
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Axisy_etric Jet with Pulsed Core

Bremhorst and Harch 19 recently studied a fully pulsed axisymmetric air

jet exhausting into still air and their measurements of Q(x)/QE are

reproduced in figure 2. They used a mechanical valve connected to a pl_num

chamber by a smooth transition piece. The valve allowed flow for one third

of its period of cyclic operation. The first and third authors used the

same valve to study an axisymmetric air jet flowing into still air but with

pulsation restricted to the inner core by the fitting of a two-stream

coaxial nozzle downstream of the valve (figure i). The nozzle consisted

of a central reducer with 6.9 mm exit diameter to which air was supplied

solely from the pulsating valve, and an annular section of 25.4 mm diameter

wh_ich was _ed through a regulating valve with air taken from upstream oF

the plenum chamber.

The total jet flow rate was measured with a flow meter well upstream

of the plenum chamber. The inner coaxial jet flow rate for the pulsed core

was metered separately upstream of the plenum chamber. The mean exit veloci-

ties _or the steady annular portion of the jet and the pulsed core were 18.3

and 12.6 m/s respectively.

The results in figure 2 were obtained by planimeter integration of the

radi,l_ times local mean velocity versus radius profiles. These profiles

were [aired to zero in order to exclude the potential tails as was done by

18
Cr_,w a_id Chamvagne . The total volumetric flow rate across a downstream

_ection was then normmlized by the mean volumetric flow rate at the nozzle

18
exit. Measurer,_ents by Crow and Champagne for a steady axisymmetric jet

arL_ p_e_ented for comparison.
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DISCUSSION

The results in figure 2 show the powerful effect of full jet pulsation

on entrainment. Also, the entrainment is seen to increase with frequency,

but measurements are available for only two frequencies. Pulsation of only

the jet core still provides significant entrainment benefits over the steady

jet (figure 2) and this method can be regarded as an entrainment control

device which enables the setting of the desired entrainment level for a jet

of given flow rate. The fluidically oscillated jet shows equally significant

entrainment increases (up to 55 percent increase in Q(x)/QE at the most

downstream station) when compared in figure 2 with the steady jet. Similar

results with the same fluidic nozzle operated at a higher pressure ratio

(1.33) were obtained by %eltman 22 with a cruder measuring technique

(pitot-static tube). Finally, in figure 3 the volumetric flow rate

measurements for the sinusoidally oscillated jet flap show negligible

variation from the corresponding steady jet measurements. This indicates

that any significant influence of jet oscillation on the entrainment

processes must, if it exists, be confined to the as yet uninvestigated

vicinity of the nozzle.

These results indicate that entrainment depends on the type and amount

of jet unsteadiness. Apparently the mere introduction of jet unsteadi-

ness: by small sinusoidal flow angle variations is insufficient to enhance

ent_rainment but it should be noted that the results in figure 3 were obtained

at Ineasuring stations which are all many nozzle widths downstream of the

jet nozzle. Thus, no fully conclusive statement can be made at this time

abo,t the entrainment close to the nozzle. However, the measuring stations

for the sinusoidally oscillated jet were all within less than one llalf of
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thc :Jet wave length. Therefore, the sinusoidally oscillated jet was operated

at a much smaller reduced frequency than the other two jets. In effect, it

approached quasi-steady conditions which may well explain its low entrainment.

Indeed, in two previous papers 20'23 it was shown that quasi-steady concepts

are quite successful in explaining the major flow features.

The high entrainment of the fluidically oscillated jet woul_ appear to

be caused by the high-frequency content of this square wave type of oscilla-

tion but more detailed measurements are clearly needed, in particular for

the fluidically oscillated and the pulsed jets. Such studies are presently

in progress. Furthermore, practical ejector application requires the

proper trade-off between entrainment and primary nozzle thrust efficiency.

• . 5,22
Whil_: some information is available on the thrust efflclency of the

fluidic nozzle there seems to be none available for pulsating nozzles.
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